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Received 6 February 1978 

Abstract. I discuss a simple model in which tkie vacuum expectation value of a complex 
scalar field 4 is non-zero in the flat-space vacuum. Generalising to curved space and 
choosing the conformal vacuum in Friedmann models I find that in hot big bang models 
symmetry is restored at early times whereas in cold models two new effects arise-a 
classical curvature term and a zero-point fluctuation term. These have opposite effects 
and lead to restoration only in closed universes. 

1. Themodel 

This is a straightforward adaption of that discussed by Kirzhnits and Linde (1976). 
The Lagrangian is 

L = -$(lV4I2 - p214I2 +$R (412 + A  [+I4) (1) 
R is the Ricci scalar. L is chosen so that the well known scaling properties of A44 
theory in flat space are generalised to curved space. The resulting Euler-Lagrange 
equation 

(-VUVU +& - p 2  + 2A 1r,bI2)q5 = 0 

(-6,6, + $fi - p2flT2 + 2A Ic$12)C$ = 0 

(2) 
has the property that if {4, gus} solve (2) then C$ = SZ-l4 and gap = f l 2 g U p  are such that 

(3) 

where 9, and l? denote the covariant derivative and Ricci scalar of the rescaled 
metric ts. If p2 = 0 the equation is conformally (or Weyl) invariant. 

In flat space the 'vacuum' of the model has a non-vanishing expectation value for 
4. Following Kirzhnits and Linde (1976) I write 

To lowest order, averaging the equation of motion in the Gibbs state at temperature 
T, I obtain an equation for (T: 

u [ ~ ~ - A ( u ~ + @ ) ]  (5) 

@ = 3(43+(43.  (6) 
@ represents the thermal fluctuations and the angular brackets represent averaging in 
the Gibbs state. The following two self-consistent solutions are possible. 
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1.1.  Disordered state 

U = 0, c#q and c $ ~  have masses 

1.2. Ordered state 

U = - - @  P 2  
A 

m’4 =-p2+A(3u2+@) 

m 2 = 0 .  2 

The massless particle is of course the Goldstone boson. Obviously as @ increases the 
disordered state is favoured and above a certain value no ordered solution is possible. 
If m: and m: are approximated by zero the mean square fluctuation of a real field 41 
is, according to Kirzhnits and Linde, 

(@> = T2/12 (7 1 
so that the ordered state is impossible above a certain temperature 

2. Generalisation to Friedmann universe 

Any Friedmann model has the form 

ds2=  n2(q)(-dq2+gdni)  (8) 

where n(7) is the scale factor and dn’, is the metric of a three-space of constant 
curvature with radius a.  The conformally rescaled field equation becomes 

where V’, is the Laplacian on the three space. I now treat this equation in the same 
way as in flat space but choosing the Gibbs state in the rescaled, static space. The 
rescaled temperature remains constant (Gibbons and Perry 1977). We also ignore the 
q dependence of 0. One would expect this ‘adiabatic’ approximation to be valid 
provided the Hubble time n/(afl/aq) is long compared with p-’ which will be true in 
the regions of interest. The result is an equation similar to ( 5 )  but with an extra 
classical term: 

p2f12(q)---A(cr2+@)) k = O .  
a 

@ contains the fluctuations. This term is formally divergent and must be regularised. I 
propose using zeta function regularisation (Dowker and Critchley 1976, Hawking 
1977). 
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As explained in (Gibbons and Perry 1977) we may compute quantities in the 
Gibbs state working on Riemannian space obtained by Wick rotating the time coor- 
dinate and imposing a periodicity p = T-'. For a real field of mass m the partition 
function is given by 

In z = &'(o)+ ln(27p,2 )5(0)] (1 1) 

where 
. .m 
1 l ( s )  = T(S) jo tS-' e-m2rY(t) dt  

A, are the eigenvalues of the zero-mass elliptic operator governing the fluctuations 
and F, is the 'renormalisation mass'. The mean fluctuations are given by 

This yields, in the limit m2 + 0: 

if sC(s + l)ls=o = 0 the answer is independent of the renormalisation mass. 
General theory shows that 

for small E. B1 is the relevant coefficient in the Hadamard-Minakshisundarem-de 
Witt ( = 'Hamidew) expansion. For the massless, conformally invariant equation 
B1 = 0 and the fluctuations reduce to 

which is independent of the renormalisation mass. Using the results of Gibbons 
(1977) I obtain 

at low temperatures and 

(@) = P I 1 2  (19) 
at high temperatures, in agreement with Kirzhnits and Linde. f H ( s )  is the Hamil- 
tonian zeta function defined by 

1 
5H(S) = c E2," 

E,, being the energy eigenvalues of the field. Again using the results of Gibbons 
(1977) I obtain 

(4') = -k /48a2.  (21) 



1344 G W Gibbons 

This latter result agrees with unpublished work of J S Dowker who uses a different 
method. He subtracts off the direct part of a Green function. Strictly speaking the 
zeta function method as I have defined it produces (21) only for k > 0 but I shall 
assume it true for k < 0. Dowker's results appear to support this. It is interesting that 
the fluctuations can be negative which is formally impossible and a result of the 
regularisation scheme which violates naive formal inequalities. One might worry that 
this invalidates the interpretation of (42) as fluctuations, nevertheless in this paper I 
shall proceed as in the flat-space case. 

Let us suppose that we are in the zero-temperature state (cold big bang). We find 
that U satisfies: 

rr[p2R2(q)-z-A k ( c r 2 - 3 ) ]  k = O .  

Thus the ordered phase satisfies 

As q + 0, R -j 0. This means that at early times the ordered phase will only be possible 
if k ( l  - & A ) >  0. Since one usually has A << 1 this depends on the sign of k. In closed 
models an ordered phase at early times is not possible whereas for an open model it 
will be favoured. As stated in the abstract the classical term and the zero-point 
fluctuations have the opposite effect. 

On the other hand if one considers a more realistic example in which the system is 
at a finite temperature 3 K the thermal fluctuations will swamp both the classical term 
and the zero-point term and at high enough temperatures the disordered state is 
favoured. As the universe cools down it will 'fix' in the ordered state. This has been 
discussed by Kirzhnits and Linde. 

Another application of these ideas would be to the de Sitter invariant state on de 
Sitter's space. The eigenvalues of -V,V" +iR are 

$A[n(n + 3)+ 21 (24) 
and the degeneracies are 

4(n + l)(n + 2)(2n + 3). 

This leads directly to 

whence 

which also agrees with the unpublished work of J S Dowker. The fact that (c$~) is 
negative is especially interesting because this state has an interpretation as a Gibbs 
state of temperature T = (27r)-'d($A). Nevertheless the fluctuations are negative. 



Symmetry restoration in the early universe 1345 

Now the corresponding equation for U is 

If A << 1 it is the classical term which governs whether an ordered or disordered 

One may also repeat the analysis for 63P2 (Gibbons and Pope 1978) and find that 
state appears. However usually p 2  >>A and geometrical effects are negligible. 

A 
1 4 4 ~ ~ '  

(&= -- 

Again the fluctuations are negative. 
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